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ABSTRACT 

The predominant failure mode in an ultra long- 
life system is the wear-out of components. In 
order to survive long duration missions, current 
fault tolerant design techniques would require 
excessive number of redundant components. 
This paper describes a more efficient fault- 
tolerant avionics system architecture that 
requires much less redundant components. This 
architecture employs generic function blocks 
that can be programmed to replace a wide 
variety of components in-flight. Hence, each 
individual generic block is essentially equivalent 
to almost an entire redundant string of 
components in the conventional approach. In 
that way, the ultra long-life system can achieve 
much higher level of reliability while carrying 
much less components. On the other hand, due 
to the programmability of the generic redundant 
blocks, the physical location of a specific 
component might not be pre-determined. 
Therefore, wireless interconnection is employed 
to provide the necessary flexibility in 
connectivity. A testbed of this architecture is 
being developed at the Jet Propulsion 
Laboratory. 

INTRODUCTION 

After decades of Solar System exploration, 
NASA is close to completion of the initial 
reconnaissance, and has began landing and 
sample return missions on many planets, 
satellites, cornets, and asteroids. The next 
logical step for space exploration is to expand 
the frontier to the far reaches and beyond the 
solar system. Possible missions include Pluto 
and Kuiper Belt objects sample return or 
interstellar space exploration. These missions 
can easily last for more than 30 to 50 years. 

In addition to deep space exploration, many 
terrestrial spacecrafts also require ultra long life 
design. One of the major factors in the 
maintenance cost of communication satellite 
networks is the replacement of failed 
spacecrafts. The total cost for manufacturing, 
testing, and launch to replace a failed satellite 
exceeds hundreds of millions of dollars. In 
addition, there are also costs associated with the 
lost of services during a down time. 

Ultra long-life space systems need breakthrough 
technologies in four main areas [ 11: 
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long-tern survivability - to handle failures 
due to random events, design errors, and wear- 
out mechanisms; 
optimal management (administration) of 
consumable resources - to maximize the 
acquisition and minimize the consumption of 
consumable resources such as power, fuel, and 
the generic blocks; 
evolvability and adaptability - to have built-in 
mechanisms so that the capabilities and 
functions of the spacecraft can be updated 
after launch; otherwise, the useful life of the 
spacecraft will be limited by the obsolescence 
of the on-board technology, and 
long-term operation of the spacecraft - to 
reduce the operation costs and maintain a 
workforce knowledgeable of the spacecraft. 

The following discussion will focus on the 
architectural aspect of the long-term 
survivability. 

LIMITATION OF CONVENTIONAL FATJLT 
TOLERANT AVIONICS ARCHITECTURES 

The current technologies and spacecraft design 
techniques are not adequate to support a 50-year 



mission. While all spacecraft avionics 
architectures have fault tolerance, they are 
designed to tolerate random failures, which can 
be handled effectively by dual or triple 
redundancy for a relatively short mission life. 
However, they are not suitable for long duration 
missions since they are not very efficient in 
utilizing redundant components. For example, 
in dual-string architecture, the system fails when 
the processors in both strings have failed. It is 
impossible to use the other components in the 
system to resurrect the system even though they 
are still functioning properly. Consequently, the 
improvement of system reliability by the 
conventional fault tolerance architecture will 
diminish in time. This can be illustrated by 
reliability modeling as shown in Figure 1. 
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Figure 1 : Reliability of Single and Dual String Systems 

Furthermore, the predominant failure mode in an 
ultra long-life system is the wear-out of 
components. All active components in the 
system are destined to fail before the end of the 
mission. Therefore, the conventional fault 
tolerant architecture would require many more 
redundant Components, as they are not efficient 
in utilizing the redundant components. An ultra 
long life missions would require much more 
efficient fault tolerant architecture to reduce the 
number of redundant components required. 

AN AVIONICS ARCHITECTURE FOR 
U L T M  LONG LIFE MISSIONS 

The NASA Exploration Team has developed a 
highly reconfigurable avionics system 
architecture that uses redundant resources much 
more efficiently. This architecture employs 
Generic Function Blocks that can be configured 

or programmed in-flight. This is illustrated in 
Figure 2. 
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Figure 2: Avionics System with Generic Function Blocks 

When any function block fails, one of the 
Generic Function Blocks will be configured to 
replace the failed block. Hence, in some sense, 
each individual generic block is almost 
equivalent to an entire redundant string of 
components in the conventional approach. For 
this reason, the ultra long-life system can 
achieve much higher level of reliability while 
carrying much less redundant components. 

A reliability model shown in Figure 3 illustrates 
the reliability of the fault-tolerant architecture 
using Generic Function Blocks. It compares a 
dual-string system, in which each string has 8 
components, to an ultra long life avionics 
architecture consisted of 16 Generic Function 
Blocks, assuming the Mean-Time-Between- 
Failure of each component is 125,000 hours (14 
years). It is clear that the Generic Function 
Block architecture has much higher reliability 
than the dual-string system. 
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Figure 3: Reliability of Dual String and Generic 
Function Block Systems 



Providing connectivity among the generic blocks 
is an obstacle in the implementation of the 
Generic Function Blocks architecture as the 
needed connectivity will be difficult to 
determine before launch. This is because a 
Generic Function Black should have the 
capability to replace any one of the components, 
regardless of their relative positions. This may 
result in a drastically different configuration 
after the fault recovery. Therefore, the 
connectivity among components has to be very 
flexible. A conventional solution is to use a 
switched network connection such as a crossbar 
switch. However, the complexity of a switched 
network can grow very rapidly with the number 
of functional blocks in the system. 

The approach taken in this research is to use 
wireless interconnection to replace the switched 
network (see Figurt: 2). Since the signals of a 
wireless network are broadcast, it is not 
constrained by the physical locations of the 
function blocks as long as the distance between 
two blocks is within the broadcast range. This 
usually is not a problem for avionics systems 
since all the components are confined in small 
space in most cases, 

FAULT DETECTION IN THE 
ULTRA LONG LIFE AVIONICS SYSTEMS 

Since the components in the Generic Function 
Block architecture are not duplicated, it is more 
difficuIt to use duplicate-and-compare or voting 
to detect failures. For some failure modes such 
as data corruptions, error detection and 
correction codes are still applicable. On the 
other hand, function block level failure modes 
such as crash cannot be detected as directly as 
the duplicate-and-compare method. The 
conventional method to solve the problem is to 
use watchdog timers. However, the detection 
latency of a watchdog timer is unacceptable in 
many applications. 

The approach this research has taken is to use 
the Autonomous Testing [2] [3][4]. Autonomous 
Testing is a distributed fault detection technique, 
in which each component in the system is tested 
by several other components and the identity of 
failed components are derived from the test 

results. As an example, a Generic Function 
Block architecture with three function blocks, as 
shown in Figure 4, might be considered. 
Periodically, each function block in Figure 4 is 
tested by itself and another block as follows. 
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Figure 4: Autonomous Testing System Example 

First, each node will perform a self-test. In a 
fault free situation, each block should pass the 
self-test. This is indicated in the diagram that 
each block has a P (Le., pass) in the Test Result 
Register under its own name. 
Second, in the test phase, each block is tested by 
its testers (for the example in figure 4, each 
block is tested by another block). For this 
example, the block A tests the block B, the block 
B tests the block C, and the block C tests the 
block A. If there is no fault, each block should 
also pass each test. This is indicated in the 
diagram that each block has a P in the Test 
Result Register under the name of the block it 
has tested. 
Third, in the diagnostic phase, each block x 
forms its opinion about the health status of any 
other functional block y either from the result of 
testing, if x tested y ,  or from the opinion of some 
other block z such that z is healthy in x’s  
opinion. Hence, even though the block A has not 
tested the block C, but by the opinion of the 
block B (whom the block A finds healthy), the 
block A finds that the block C is also healthy 
and uses this information to update its Test 
Result Register in the host computer 
accordingly. 

When one of the functional blocks fails, its 
upstream neighbor will detect its failure and that 



information will propagate to the other 
functional blocks in the diagnostic phase, so that 
the test results in the failed block will be 
ignored. And it has been proven that all the 
healthy functional blocks in the system can 
deduce a consistent diagnosis fiom the test 
results about which function block(s) have 
failed. This is illusbated in Figure 5,  where the 
block B has failed. In the test phase, the block A 
detects the block B’s failure and the block C 
finds out that the block A is healthy. In the 
diagnostic phase, the block C finds out from the 
block A that the block B has failed. On the 
other hand, the block A finds the block B faulty 
and ignores its opinion about other bIock(s) - in 
this case the block C. However, since it is 
assumed that there is only one failure per 
processing cycle, and since the block A already 
knows that the block B has failed, therefore the 
block A can determine that the block C is 
healthy by deduction. Therefore, both the 
blocks A and C have a consistent diagnostic that 
the block B has failed, so that the block B will 
be ignored in subsequent operations. A more 
general study of the Autonomous Testing can be 
found in l2-41, 

wireless interconnections, and (3) fault diagnosis 
with distributed autonomous detection. 

The “system” that this prototype implements is a 
navigator that has a gyroscope, star tracker, and 
accelerometer. Each of the sensors has its own 
controller, which collect data from the sensor 
and send it to a local controller for processing. 
The conceptual design of the prototype is shown 
in Figure 6. 
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Figure 6: Navigator implemented by Generic 
Function Block 
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Figure 5:  Diagnostic with Autonomous Testing 

ULTRA LONG LIFE AVIONICS 
ARCHITECTURE PROTOTYPE 

A prototype of the ultra long life avionics 
architecture is being developed at the Jet 
Propulsion Laboratory. This prototype is 
intended to demonstrate the three key aspects of 
the architecture: (1) the feasibility of fault 
recovery with generic function blocks, (2) the 
feasibility of system reconfiguration with 

A Generic Function Block implements each 
sensor’s controller in the prototype. Also an 
805 1 micro-controller is implemented within the 
FPGA. The Generic Function Block contains an 
FPGA with 600 thousand gates, a wireless 
interconnection interface, a 64 Kbytes of 
program memory, and other supporting circuits 
and displays. 

Figure 7 :  Generic Function Block Implementation 



The wireless interconnection is a commercial 
proprietary protocol, similar to IEEE 802.1 lb 
standard [ 51. An implementation of the Generic 
Function Block is shown in the Figure 7. 

There are three types of software running on the 
Generic Function Block navigation sensor 
interface function, autonomous testing, and fault 
recovery and reconfiguration. Each Generic 
Function Block has the software for all sensor 
interface controllers but is assigned to run only 
one type of sensor control sofhvare at the system 
initialization. The autonomous testing software 
executes the autonomous testing. The testing 
performed is a simple reading of a watchdog 
timer from the Generic Function Block under 
test. The Generic Function Block can deduce 
which block has failed by examining the testing 
results as described in last section. When a 
block fails, its function will be assigned to its 
upstream block neighbor. This is the 
responsibility of the fault recovery and 
reconfiguration software. 

Due to resource limitations few simplifications 
are needed to enable the implementation of the 
prototype in a timely manner. First, since there 
are no available sensors equipped with the 
wireless interface, a host computer is used to 
simulate these sensors. The host computer sends 
the sensor data to the corresponding interface 
controller by broadcasting the data along with 
the sensor name (in form of an address). Only 
the Generic Function Block that has the correct 
sensor controller will accept and respond to 
command and data. 

Another simplification in this implementation 
was to use the host computer as a pass-through 
channel and arbitrator for the communications 
among the Generic Function Blocks, In other 
words, when a Generic Function Block sends a 
message to another block, it first sends the 
message to the host computer, which then re- 
broadcasts the message so that the function 
block with the correct destination address will 
receive and respond to the message, The host 
computer also sets up the Generic Function 
Blocks such that no more than one block will 
send message at any time. This simplification 
alleviates the prototype fiom worrying about the 

details of the arbitration protocol, so that more 
effort can be focused on the design of the fault 
recovery and system reconfigurations. 
However, this simplification will be removed 
from future prototypes. 

The full testbed with all Generic Function 
Blocks and the host computer is shown in Figure 
8.  The system integration and test are still 
underway. When the prototype is competed, 
the fault recovery with Generic Function Blocks 
can be demonstrated by injecting a fault into one 
of the blocks (e.g., twhing off the power). Then, 
it is expected that the failure will be detected by 
the autonomous testing and the task on the failed 
block will be assumed by its upstream neighbor. 

Figure 8: Ultra Long Life Avionics Architecture Testbed 

EXPERIMENT OF HARDWARE 
RECONFIGURATION WITHIN A GENERIC 

FUNCTION BLOCK 

In the prototype, the system reconfiguration and 
reaIlocation of functions from one block to 
another is basically achieved by software. This 
is possible in the prototype because all the 
sensor interface controllers have very similar 
designs. However, in a more general case, blank 
Generic Function Blocks have to be 
programmed to replace a failed function block. 
In that case, hardware reconfiguration will be 
necessary. 

The Ultra Long Life Avionics research team at 
the Jet Propulsion Laboratory has also 
conducted an experiment to reconfigure Generic 
Function Block through wireless inter- 
connection. A circuit board was constructed for 



this experiment as shown in Figure 9. This 
circuit board also contains an FPGA and a 
number of IiO interfaces. One of the YO 
interface, a parallel port, is modified so that it 
can accept the configuration for the FPGA from 
a computer through wireless interconnection. 
The testbed for the hardware reconfiguration 
experiment is shown in Figure 10. 

The FPGA contains thee simple interface 
circuits: an LED interface, an LCD interface, 
and a switch interface. In addition, it also 
dedicates an area of the FPGA as “spare logic” 
that can be reprogrammed to replace either the 
LED or the Switch Interface. The circuit board 
also includes two sets of switches for fault 
injecbon into the LED and Switch Interface 
circuits. These two interface circuits detect the 
injected faults by monitoring the positions of 
these switches. The design of the circuit board 
and FPGA is depicted in Figure 1 1. 

Figure 9: Hardware Reconfiguration 
Demonstration Circuit Board Design 

In this experiment, the configuration of the 
FPGA was first downloaded from the computer 
to the chip through the wireless interconnection. 
In normal operation, the System Switches 
(Figure 11) could be set such that the LED 
interface could turn on an array of LEDs in 
different patterns. When a fault was injected 
into the LED interface, the LEDs would not be 
turned on properly and an error status signal was 
sent back to the computer through the wireless 
interface. Upon receiving the error status, the 
computer downloaded a new configuration file 
to the FPGA, again through the wireless 
interface, so that the spare logic was used to 
replace the LED interface. Similarly, when a 
fault was injected to the Switch Interface (Figure 
ll), the System Switches would not function 
properly and an error status was sent to the 
computer. Consequently, a new configuration 
file was downloaded to the FPGA, so that the 
spare logic was used to replace the Switch 
Interface. This experiment was demonstrated 
successfully in the testbed. 

r LCD 

Figure 1 1 : FPGA Design for Hardware 
Reconfiguration Demonstration 

This hardware reconfiguration capability will be 
incorporated in future Ultra Long Life Avionics 
experiments. 

Figure 10: Hardware Reconfiguration 
Demonstration Testbed 



CONCLUSION 

This paper has explored some unconventional 
architecture design techniques that utilize much 
less redundant components for sustaining very 
long duration missions. An architecture based 
on the concept of Generic Function Blocks has 
been developed. A prototype of this architecture 
representing a navigator subsystem is being 
constructed at the Jet Propulsion Laboratory. 
This prototype can detect failures in any one of 
the Generic Function Blocks by means of 
Autonomous Testing through wireless 
communication among the blocks. Once the 
failed block is identified, software technique is 
employed to relocate the tasks of the failed 
block to a healthy block. 

An independent experiment of reconfiguring the 
hardware design of an FPGA through wireless 
interconnection has also been conducted. The 
experiment was conducted successfully and the 
technique will be incorporated into futwe 
system reconfiguratiodrecovery experiments. 

FUTURE WORK 

Many issues of t h s  ultra long life avionics 
architecture have not bee addressed by the 
experiments mentioned above. Examples of 
these issues are: 

1. The wireless interface in this prototype has to 
handle only a few function blocks, and the 
arbitration problem is simplified by the host 
computer. In the next step, a more 
sophisticated wireless protocol should be 
developed so that large number of Generic 
Function Blocks should be able to 
communicate directly with each other 
simultaneously. 

2. A more realistic testbed need to be 
constructed, in which all sensors have 
wireless interface and can communicate with 
any Generic Function BIoch directly. 

3.  A “self-repair” capability should be 
developed in each Generic Function Block, 
so that a failed block can be salvaged and 
reused. 

4. The wireless interface among the Generic 
Function Blocks might interfeTe with the 
telecommunication system or other on-board 
electronics. The effect of the wireless 
interface need to be investigated and design 
techniques should be developed to minimize 
such interference. 

5. Traditional verification techniques such as 
accelerated life test might be too expensive or 
talung too long to verify the reliability and 
lifetime of the Ultra Long Life Avionics 
architecture. New verification techniques 
have to be developed for systems that are 
ultra long life. 
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